Opportunities for benefit from NDT

Dr Barbara Gordon
Consultant - University of Bristol
Purpose of session

• Set things up for discussion groups
• Give some background on drivers/ challenges
• Scope of discussions?
• Highlight some of issues - for groups address?
• Throw some ideas – stimulus to the discussions?
• Major Challenges across all sectors of market
 • Civil / military
 • Cost, Timescale ...
 • Weight (= cost!)
 • All phases lifecycle...design, build, support...

• To address... in design and manufacturing introduced
 • CAD, 3D modelling, analysis tools,
 • Automation manufacturing,
 • ATL (automated tape laying, FP (fibre placement)
 • Out of autoclave curing, resin infusion, bonded structures
 • Integration Design – Manufacturing interface
NDT for Composite Structures

- Principally ultrasound, some X-ray
- Integral part of process
- Principally production and QA
- Automated processes introduced
- Alternative methods eg laser NDT
- BUT
 - information generated, overall role
 - largely unchanged since 1970’s

- However:
- New analysis capabilities developing
 - Ultrasound, X-ray
- Potential to:
 - Identify defects not previously identifiable
 - Increased resolution
 - 3d images etc

What is most important? Where to target efforts?
What do we want from this new capability?

• Targetting?
 • More detailed definition / 3d plots of defects?
 • Ability to characterise defects/ locations that can’t currently be well characterised?
 • Ability to use NDT info to better support other phases of lifecycle?
 • Ability to feed into other software packages?
 • Other?

• For cured composite structures
 • Limited knowledge of parts below surface
 • Can only be achieved through part cut-up
 • Quality control for consistent parts
 • relies on process control
 • layup, handling, curing
Delaminations and Impact damage

- Voids, delaminations
- Currently:
 - External dimensions,
 - Single/multi-level
 - Depth from surface
 - Not detail characterisation below outer delaminations

- What level of additional information?
- Full 3D characterisation of multilevel defects through thickness?
Porosity, Cracks and Voids

- **Porosity?**
 - Currently - Percentage porosity
 - Want full 3D model of porosity?
 - Want Pore sizes / distribution etc?

- **Voids?**
 - Full 3D definition of void geometry?
 - Geometry issues?

- **Cracks?**
 - X-ray – currently crack length
 - Usually occur in complex geometry areas/ resin rich regions
 - Want better characterisation?
 - Full 3d imaging?
Fibre wrinkling / waviness

- Where to target efforts?
 - In-plane? / out of plane deviations?
 - Flattish surfaces from automated lay-up?
 - Radii and corners
 - Uncured part (using X-ray) to allow correction before cure
Fibre distortion

- Fibre distortion from layup around complex features?

Fibersim® model showing localized ply deformations – red most severe

Image courtesy of Siemens Industry Software Ltd

Top Hat Stiffener – fibre deformation

LHS - Creases

RHS – limited angular deviation but no creasing
• Concessionary Action on defects
 • Problematic
 • Defect acceptance curves generated simplistic situations
 • Artificially produced defects
 • Real parts – complex stress fields
 • Other structural features interacting with defect
 • Validity of such defect curves?
 • Acceptability of part produced?
Composite fracture analysis?

- FE Approach with cohesive/ interface elements
 - Crack progression
 - Delamination / voids/ bonding failures

- Feed NDT 3D analysis into fracture analysis?
 - Model defects on case by case basis?
 - Generate improved defect acceptance criteria?

- Can it be used to address effects kinks/ wrinkles?
- Discuss in section 4
Where in the life cycle?

- Focused traditional NDT role
 - Support production, concessionary action,
- Opportunities in different phases of life cycle?
 - Support Design? Qualification?
 - Can 3D NDT replace part up / ply by ply resin burn off?
 - Verify Fibresim predictions?
 - Identify fibre distortions?

Product Lifecycle

<table>
<thead>
<tr>
<th>Design</th>
<th>First Article Manufacture</th>
<th>Product qualification, First Article Inspection</th>
<th>Production</th>
<th>Product QA</th>
<th>In service</th>
<th>Product Maintenance and Repair</th>
<th>Scrap</th>
</tr>
</thead>
</table>

bristol.ac.uk
Options moving forward?

- Throw various thoughts into arena for discussion
- Where to target resources? Which has most benefit?
 - More detail information in traditional role? – particular problems?
 - Integrate with other automated systems?
 - Options to integrate with other areas of lifecycle?
 - Other ideas....?
- Ideally set targets - size, resolution etc....
With thanks to Prof Kevin Potter, BAE Systems and Siemens Industry Software Ltd for images to support this presentation.