Bonded Joints in Military Aircraft

Dr Barbara Gordon
Consultant - University of Bristol
Bonded Joints in Military aircraft

- Successfully used since mid 80’s
- Major composite structure for production aircraft
- UK Examples include.....
Future Military Aircraft - Challenges

• Previous military aircraft projects
 • Design phase several years
 • Typically 1000+ aircraft
 • Large projects, long development, high cost

• Future aircraft programmes
 • Small batch numbers
 • Multiple customers / configurations
 • Rapid design process (months not years!)
 • Lower cost manufacturing methods
 • BUT still same level airworthiness

• Option - Bonded structure
 • Problems....
Low Cost Manufacturing Approach

Possible manufacturing solutions include:
 • Out of autoclave processing
 • Different material systems
 • Low cost tooling

• Bonded rather than bolted structures
• Applications include eg
 • Skin to substructure bonding
 • Spar to rib cleating
Composite assembly tolerance control issues

- Eg Bonded J spar configuration

All composite thicknesses typically +/- 6%

Controller aerodynamic girth

- Use precured skins for tolerance control
- Works well
- Expensive tooling
- Inflexible
- Not appropriate for small batches

Film adhesive
Constant thickness

PRE-CURED CFC SKINS

UN-CURED 'Z' & 'C' SPAR ELEMENTS

'CLEAVAGE' FILLED WITH UN-CURED CFC WEDGE

UN-CURED 'Z' & 'C' SPAR ELEMENTS

'FILM' ADHESIVE

CONFORMABLE TOOLING SHOWN THUS:
Assembly advantages of paste adhesive

Advantages
- New paste adhesives – similar strength to film adhesives
- Gap filling capability
- Dimensional control with cheap tooling
- Appropriate small batch manufacture

Problems/ Disadvantages...
• Problems/ Disadvantages......
 • Pre- cured parts
 • Surface preparation / cleaning
 • Potential contamination
 • Determining / ensuring integrity of bond
Approach for improvement......

• Addressing whole process

• Before Bonding
 • Advanced cleaning methods
 • Advanced inspection methods skins after cleaning

• After bonding:
 • Advanced NDT to identify defects ?
 • SHM techniques on bondline ?
 • Advanced analysis techniques – bond strength defect analysis

Potential techniques under consideration
Surface Preparation and Cleaning

- Manual cleaning operation
 - High skill activity
 - Could possibly miss the op out altogether...
- Aim – method to take man out of the loop
 - Options include
 - eg plasma cleaning being investigated
 - But sometimes:
 - not remove all contaminants
 - Alter contaminant surface without removing
Traditionally surface wetting

Aim – Automate, take man out of the process.

Advanced inspection methods

- eg FTIR
 - Issues detecting modified contaminant

FTIR spectrum,
- 3 specimens silicone contamination
- one control
Adhesive Bonded Joint Problems

- Bigger issue with paste than film adhesives
- Particularly:
 - More Porosity / voids - limits ability to NDT
 - Surface issues – disbands / kissing (zero volume bonds) / low strength adhesion
 - Poor mixing
 - Thicker bondlines can lead to more cracking
• Currently:
 • HAVE to proof load the structure
 • “We must find an NDT technique that gets us away from this position”
 • How does SHM fit in with this?
Summary

- Future military aircraft
 - Small batch production
 - Short timescales
 - Low cost
 - Same level airworthiness

- New paste adhesives:
 - Low cost manufacturing

- Need to demonstrate bond integrity
 - Currently MUST proof load
 - Need NDT technique to move from this position
• Acknowledgements to BAE Systems for provision of majority of images and information to support this presentation