Drivers for Owners and Operators of Onshore/Offshore Wind Turbines

A. Morris
Chief Mechanical Engineer
EDF Energy: Coal, Gas and Renewables
13-14th February 2019

Workshop on NDT and SHM Requirements for Wind Turbines
OREC, Blyth
Agenda

• EDF Renewables Fleet

• Challenges

• Examples of problems, impact and solutions

• R&D: Exploiting opportunities, Planning for the foreseeable

• What does the end user require

• View on SHM and NDT
EDF Overview: Renewables

EDF’s aim is to be an efficient responsible electricity company that champions low-carbon growth

Part of this strategy is based on accelerating the development of renewables generation and guaranteeing the safety and performance of existing and new-build nuclear facilities

Target of 50GW of renewable energy by 2030 (Wind, Hydro, Solar, Marine), other opportunities such as Biomass, heat recovery, geothermal via affiliates (Dalkia).

EDF Renewables: 10GW of installed wind turbine capacity (June 2018)

EDF Renewables Services: In-house provider of operation & maintenance services (working for internal and external markets)

EDF R&D: Innovation, collaboration, in-house development
Onshore Wind Farms

Offshore Wind Farms

Teesside 2013: 62MW, 27 turbines. Entirely developed, built and operated by EDF Renewables

Blyth 2017: 41MW, 5 turbines 8.3MW each, gravity base foundations

France: Three projects in development for 2022/23 generation

UK: NnG offshore wind farm in progress
- 15Km off Fife coast
- 450MW
- Jacket foundations
- 2022 generation
Challenges

Design

Manufacturing

Construction

In-Service

Risk

Opportunity

Revenue

Diligence
Beyond design code

Procedures
Good practice
Quality

Inspection: method, value?
Repairs: method, durability?
Actions: timely, risk based
Logistics: fleet view, cost-effective?
Durability: meet expectations?

Through Life Design Assurance
Example: Design Problem

• First EDF offshore wind farm, Commissioned in August 2013, 27; 2.3 MW turbines,

• Service availability agreement in place with the OEM for the operation and maintenance of the turbines with a target technical availability of 94.5% in year 1,

• Problem evident in November 2013, excessive vibration at the power and transformer modules inside the wind turbine tower on several turbines observed, cracked internal support beams (Transformer floor)
Internal platforms support the 690v/33Kv transformer, switchgear and the power units + ancillaries (12 tonnes)

All suspended on a skeletal frame, which is in turn supported of corbels attached to the inside of the tower

Failure Sequence

1. Tension arms (4) loosen
2. Subsequent reduction in natural frequency of the suspended platform, moves close to a harmonic; 1.6Hz
3. Excessive vibration leading to beam failure in a short time period (~ 2-4 months)
Solution and points arising

• Root cause; due to insufficient scrutiny at the design stage and poor installation

• Modified design; support beams relocated (mounted off tower flange), tension arm design strengthened...........still insufficient for 20 year design life

• During remediation period (~ 2 years)
 - NDT on all turbines
 - Load reduction (reducing vibration levels)
 - Design studies
 - Temporary (clamp) repairs
 - Sensors installed (alarm and turbine trip) [SHM]
 - Trial installation of new design for H&S compliance
 - Good support from the OEM

• New design
 - Fatigue ranking for future inspection
 - Spare tension arms and thorough install procedures
Example: In-Service Problems

2017 blade failure, ~ 9 years old

Blade type prevalent across the fleet, 40m

RCA not wholly conclusive

Other major repairs on failed blade, not coincident with the failure. Inspections and repairs on the same type of blade across the fleet

2016 blade failure, ~ 20 years old

~ 150m blade throw, old 2-bladed rotor design

RCA concluded failure from a prior repair location

Site location relatively close to housing, local roads
Example: Converting a Problem to an Opportunity

Two intact blades now available from the 2017 failure; one destined as a fleet spare, the other destined for R&D

Same blade type on another wind farm laser scanned in 2016

Subsequent R&D plans developed

Blade Modelling, Defect Tolerance, Damage Progression

Inspection methods, trials

Blade sectioning and sub-structure testing

Inspection Protocols for Site

Ref: Previous work with Imperial College (Prof. Dear) and Riso Labs
Example: R&D planning for the foreseeable

Ref: prior industry problems with monopile foundations and axial slip

Teesside offshore wind farm; two monopile foundations installed with SHM during construction.

- Fatigue studies (other measurements ref corrosion, hydrogen, displacement etc)

- Offshore validation of structural response against structural model

- Confirmation that in-service measured foundation strain levels are much less than design basis. Clarifies location and extent for any foreseeable weld inspection required.

Strain gauges

T-SG-30-1, Wind Direction=45°

T-SG-210-1, Wind Direction=45°
• Facilitates current plans to mitigate risks arising from sub-optimal monopile cathodic protection performance (areas of under and over protection in the monopiles)

• Supports current Design Assurance activities on new offshore installations with jacket foundations at NnG

• Activities in plan for

 - Offshore foundation weld inspection and repair/mitigation methods

 - Use and deployment of robotic inspection vehicles
What does the end user require?

- Design Assurance implemented from project inception through to handover to operations
- Inspection locations identified, priority ranked and accessible by design
- Manufacturing control/quality
- Thorough installation procedures

A Good Handover of Project Documents and Outstanding Issues to the Operations Team

- Process: Records of maintenance-inspection, repeatability, traceability. Leading to timely advice
- Inspection: Method, limits, appropriate validation
- Data: Analysis, interpretation, noise, quantity!
- Repairs: Durability, re-inspection intervals
- SHM: Practical and viable, supports risk re-evaluation, predictive?
- Logistics: Minimise cost to inspect, repair and maintain
SHM and Inspection-NDT

1. Implementing a robust SHM approach should include the capability to predict remaining life or time to next inspection, based on validated methods/testing

2. SHM may be applied for short periods for data capture and development of a suitable predictive model

3. SHM may be relatively crude (Ref the example on the monitoring of the support frame tension arms and support beam cracking); aim is fit-for-purpose. Clarifying the message to the operator is paramount

4. To accommodate the above SHM will invariably require a supporting model; for life prediction and validation against prior test data

5. The target parameter life prediction purposes may not be directly measurable. A life assessment transfer function (LATF) of some description and suitable life prediction algorithms are required, likely composed of secondary variables that are measurable, including consideration of the rate of change (parameter(s)) in-service

6. SHM approaches can (and should) be deployed during both design/testing phases and for in-service monitoring. Use of SHM to support testing/simulation of components and sub-assemblies as part of the product design phase has great benefit.

7. NDT provides the necessary view on ‘do I believe the monitoring/prediction?’. This reality check is crucial.
SHM and Inspection-NDT

Plant Operations
- Sensors In-Service Monitoring
- Life Assessment Transfer Function
- Life Prediction Model Interpretation
- End User Operator
- In-Service Periodic NDT Reality Check

Project/Design
- Manufacturing Construction Inspection, Compliance
- Where to Monitor Criticality, Ranking

Design Space
- Physical Testing
- Virtual Testing
- Inspection
- Understand Materials, Assembly behaviour through life (OEM, Designer, Research)

Design Codes
End user must: Manage risk and set the priority

Loading (Force)
- Load path through structure,
- Installation,
- Time and Rate,
- Transients, loading envelope
- Fault conditions,
- History and sequence,
- Credible?

Material Behaviour (Resistance)
- Properties,
- Time and Rate dependency,
- Environmental factors,
- Composition,
- Manufacturing process,
- Ageing in service,
- Predictive model,
- Failure Mode(s)?

Inspection/Monitoring (Reality)
- Evidence of condition, NDT, metallurgy,
- Online monitoring,
- Observations from other plant,
- Big data, what's important?
- Forewarning of failure, indicators?

Potential Barriers
- Rarely do we have the full picture,
- Often, have to apply some level of subjective assessment,
- Lack of clarity tends to drive over conservative decisions (expensive),

- Seek a balanced view,
- Inform risk perception,
- Identify opportunities,
- Implement the right action for plant at the right time

Risk and Opportunity
Examples of SHM: Inspection and Life Prediction from Thermal Generation

Both Approaches developed by long-standing collaboration with Universities and other like minded Utilities and research groups

- Utilise copious amounts of data
- Utilise more refined models of behaviour; absolute limits and rate of change
- Refine inspection scope
- Update models
- Online – Advise the Operator
THANK YOU