

BINDT/RCNDE Workshop on NDT& SHM Requirements for Wind Turbines

BINDT/RCNDE Workshop on NDT& SHM Requirements for Wind Turbines

Welcome and Introduction

Prof. Robert Smith, University of Bristol Director of RCNDE and BINDT Past President

Health and Safety etc

• Tony Fong, ORE Catapult

- BINDT Workshops on NDT Requirements
 - Regulators, insurers, operators, manufacturers and NDT community.
 - Follows four previous NDT requirements workshops:

Session 1 – Understanding the industry Part 1 11.15 Coffee/tea

Session 1 – Understanding the industry Part 2

12:45 LUNCH

Session 2 – Design, failure modes and effect of defects

15:10 Tea/coffee

Session 3 – NDT/SHM/CM experiences from the field Part 1 16:30 CLOSE

Programme – Day 2

Session 3 – NDT/SHM/CM experiences from the field Part 2 10.30 Coffee/tea

Tour of Blyth Wind Turbine Demonstrator

12:30 LUNCH

Session 4 – Potential future NDT and SHM improvements

Session 5 – Breakout session (4 groups of ~10, 15-minute rotation)

15:15 Tea/coffee

Session 6 – Panel session

16:30 END of WORKSHOP

UK Research Centre in NDE

UK Composites – Market Opportunities

UK Composites Strategy 2016

CLF Strategy Delivery

UK SUPPLY CHAIN MANUFACTURING CLUSTERS AND PRODUCTS

Breakout Groups (of 10 people)

	Breakout stations: 15 minutes at each	Leader
1.	Requirements for manufacturers	Peter Thayer, RCNDE
2.	In-service requirements for composite blades	Tony Fong, ORE Catapult
3.	In-service requirements for non-blade structures	Colin Brett, Uniper
4.	Potential for new NDT, CM and SHM.	Richard Freemantle, Wavelength NDT

.....

Requirements

- NDT to life prediction transfer function
 - Operational data too
- Design/cert unknown unknowns affect design
 - could bnefit from better information
 - Benefit taken in reduced weigh
 - Assumptions being made about NDT capability
- Wrinkles
 - if know curvature can predict strength using FE model
 - Need to characterise wrinkles

- Insufficient to look at surface effect.
- Automated screening. time crucial.
- Remove delay on as many blades as possible.
- Short delay is costly. Worth having better NDT.
- Needing operator input causes delays
- Sensors during manufacture eg Bragg gratings has been tried but could be developed
- Data, machine learning, processing, Al.
 - Filtering data to present relevant info what is relevant to end user?
 NDT asonics and NDT Group

- Practicalities of NDT equipment, deployment, logistics.
 - Automated/robotic deployment
 - CM/SHM offers benefits over NDT in-service.
 - Targeted
 - GW.
- Data
 - Identify important specific data
 - Failure modes need to understand these to know

What to monitor Ultrasonics and NDT Group

- Identify inspection locations and rank them, defect types.
 - Designers to take on board and specify this.
 - Design to feed through to in-service requiremnts.
- How to measure what parameters?
 - Establish correlation between parameters and knock-down.
 - May be material dependent, as is the NDT!
- Damage tolerant design.

trasonics and NDT Group

- Monitoring and analysis of flawed state inspection intervals
- Design what tolerance is built in?

- Blade repairs
 - Return to service
 - Best practice guidance

