

Wind turbine design drivers

Tim Camp 13th February 2019

ONE PARTNER. WORLDWIDE SUPPORT.

Skillset

- Naval Architects
- Master Mariners
- Civil & Structural Engineers
- Marine Engineers
- Mechanical Engineers
- Geotechnical Engineers
- Metocean Engineers
- Hydrodynamicists
- Subsea, Cable & Pipeline Engineers

Technical Services Overview

Design engineering

Transport & Installation

Operational Services

- Wind turbine scale
- Design drivers:
 - Fatigue loading
 - Extreme loading
- Design standards
- Drivers for SHM & NDT

Wind turbine scale

GE Haliade-X 12MW

GE Haliade-X 12MW

GE Haliade-X 12MW

Mass flow rate through rotor disk at rated wind speed: 373 tonnes/s

⁵⁰ Routemaster buses

Design drivers

Fatigue loading

- Wind turbines are fatigue machines!
- Flexible / dynamic structures multiple modes of vibration
- Stochastic aerodynamic & hydrodynamic loads
- Drives design of:
 - Hub
 - Mainframe
 - Tower welds
 - Grouted joints
 - Support structure joints
 - Rolling elements (gears & bearings)

Dynamically active structure

- Campbell diagram reveals complex interaction between excitation frequencies & modal frequencies of the structure.
- Drives design of:
 - Support structure stiffness
 - Blade mass / stiffness
 - Control system

Extreme loads – extreme environmental conditions

 Design standards specify the combination of 50-year return environmental conditions with a normally operating / idling turbine.

Damage caused by typhoon Maemi in 2003 (Ishihara et al, 2005)

 Blade / tower clearance, tower buckling & foundation design (& others) are driven by extreme loads

Extreme loads – extreme environmental conditions

RENEWABLES

Blyth V66 monopile subjected to 8m waves

• Extreme waves drive air-gap requirements & (possibly) foundation strength

 Consequences of sensor & actuator faults are analysed in combination with 1-year return environmental conditions

Nordex N80/2500 at Screggagh wind farm

Corrosion

Scour

Lightning strike

Leading edge erosion

Design standards

C Design standards for wind turbines

- IEC 61400-1 "Wind turbines part 1: Design requirements"
- IEC 61400-3-1 "Wind turbines part 3-1: Design requirements for offshore wind turbines"
- DNVGL-ST-0437 "Loads and site conditions for wind turbines"
- DNVGL-ST-0126 "Support structures for wind turbines"
- DNVGL-ST-0361 "Machinery for wind turbines"
- Deutsche Institut f
 ür Bautechnik (DIBt) "Guidelines for loads on wind turbine towers and foundations."
- DS472 "Load and Safety for Wind Turbine Structures"
- NEN6096 "Safety Requirements for Wind Generators"
- ABS "Guide for Building and Classing Offshore Wind Turbine Installations"
- & others...

Drivers for SHM & NDT

- Owners need to understand the residual life of their turbines as they prepare for:
 - Lifetime extension
 - Adaptions
 - Decommissioning / repowering
- SHM should begin well before year 20 (!) but best practice is not well defined in the wind industry.

Number of onshore turbines per year reaching 20 years old

ONE PARTNER WORLDWIDE SUPPORT

OIL & GAS

RENEWABLES SHIPPING

MARINE WARRANTY & CONSULTING TECHNICAL ADVISORY, DUE DILIGENCE & EXPERT WITNESS OWNER'S ENGINEERING & PROJECT MANAGEMENT TRANSPORTATION & INSTALLATION ENGINEERING MANAGEMENT OF MARINE CASUALTIES AND WRECK REMOVAL

METOCEAN GEOTECHNICS ELECTRICAL STRUCTURES CIVILS NAVAL ARCHITECTURE HYDRODYNAMICS MOORINGS MARINE & SUBSEA ENGINEERING MARINE OPERATIONS SUPERVISION SURVEYS INSPECTIONS AUDITS

LOC