Certification Services Division Midsummer House, Riverside Way Bedford Road, Northampton, NN1 5NX United Kingdom

Tel: +44(0)1604-438-300. Fax: +44(0)1604-438-301. E-mail: pcn@bindt.org

PCN ISI/ Appendix Z1 Issue 1 – dated 1st June 2015 Implementation 01/07/2015

Syllabus document for qualification and PCN certification of NDT personnel for In- Service Inspection

1 Scope

This document defines guidelines with the intention to harmonise and maintain the general standard of training of non-destructive testing (NDT) personnel for industrial needs. Associated guidelines for NDT training organisations have been produced for the general part of training courses.

The guidelines also establish the minimum requirements for effective structured training of NDT personnel to ensure eligibility for qualification examinations leading to third party certification according to recognized standards.

This document enclose a clause about NDT in general and a clause specific to each of the following NDT method: acoustic emission testing, eddy current testing, leak testing, magnetic particle testing, penetrant testing, radiographic testing, ultrasonic testing and visual testing,.

2 Introduction, Terminology, Purpose and History of NDT

2.1 The Task of NDT

Non-destructive testing (NDT) gives an important contribution to the safety and the economic and ecological welfare of our society.

NDT is the only choice for the test of an object which must not be destroyed, modified or degraded by the testing process. This is generally required for objects which will be used after testing, for example safety parts, pipelines, power plants and also constructions under in-service inspection, but even for unique parts in archaeology and culture.

NDT is based on physical effects at the surface or the inner structure of the object under test. Often the outcome of the test needs to be interpreted to give a useful result; sometimes different NDT methods must be combined, or verified by other test methods.

2.2 The Task of NDT personnel

NDT personnel have a high responsibility not only with respect to their employers or contractors but also under the rules of good workmanship. The tester shall be independent and free from economic influences with regard to his test results, otherwise the results are compromised. The tester should be aware of the importance

The British Institute of Non-Destructive Testing is an accredited certification body offering personnel and quality management systems

assessment and certification against criteria set out in international and European standards through the PCN Certification Scheme.

© 2022 The British Institute of Non-Destructive Testing. All Rights Reserved.

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

of his signature and the consequences of incorrect test results for safety, health and environment. Under legal aspects, the falsification of certificates is an offence and judged according to the national legal regulations. A tester may find himself in a conflicting situation about his findings with his employer, the responsible authorities or legal requirements.

Finally the tester is responsible for all interpretations of test results carrying his signature. NDT personnel should never sign test reports beyond their certification. **2.3 The History of NDT**

NDT started with visual checks in prehistoric times. In medieval centuries, test methods like simple leakage tests and hardness checks were introduced. The breakthrough for NDT came with industrialisation in the 19th and 20th century: X-ray and Ultrasonic Testing for inner defects, Penetrant and Magnetic Particle Testing for surface cracks. During the last few decades sophisticated, mostly electronically linked methods like Eddy Current Testing, RADAR, Computer Tomography and Thermography were developed. NDT methods found application in a wide range of industry from civil engineering and industrial plants to space and defence technology.

The history of NDT is linked to many famous researchers and inventors like Röntgen, Becquerel, Curie, Oerstedt, Faraday and even Leonardo da Vinci. They discovered the physical principles and demonstrated early applications. All together, approximately 5000 scientists worldwide made contributions to the present state of NDT.

NDT is a global technology. Since NDT tasks and related technical problems are similar in all developed countries, improved solutions and new equipment are spread around the world within a few months. Many international conferences and standard committees contribute to a steady and consensual development of NDT for the benefit of safety, economy and the environment.

2.4 Terminology of NDT

Correct Terminology is a necessary demand for a worldwide-applied technology. It is needed for communication between contracting parties, testers and certifying bodies. Terms like "Indication", "Imperfection", "flaw" and "defect" need a precise and unequivocal definition to avoid any confusion and misinterpretation of results. The European Standards EN 1330–1 and –2 (for different NDT methods) and the synonymous International Standards (partly drafts) give the agreed denominations and short definitions of terms.

2.5 General safety considerations

2.5.1 Non-destructive testing is often applied in conditions where safety of the operator may be in danger due to local conditions, or where the application of the particular NDT method or techniques may in itself compromise the safety of operator and others in the vicinity.

An essential element of any course training for NDT personnel must therefore be safety and the duration of the training for this subject should be adequate and provided addition to the technical training associated with the particular NDT method.

2.5.2 General safety considerations may include but are not necessarily limited to:

- Environmental conditions: heat, cold, humidity;
- Toxicity: of NDT materials, tested products, atmosphere;
- Radiation safety: NDT materials, products, local regulations
- Electrical safety: NDT equipment, lethal voltages, EMC;
- Potential of personnel injury: working at height or in other dangerous environments;
- Personnel protection equipment: closing, radiation dosimeters.

The British Institute of Non-Destructive Testing is an accredited certification body offering personnel and quality management systems assessment and certification against criteria set out in international and European standards through the PCN Certification Scheme.

© 2022 The British Institute of Non-Destructive Testing. All Rights Reserved.

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

Contents	Level 1	Level 2		Level 3 The following should be covered in addition to that in Level 1 & 2		
1.0	Module 1	Module 1	Theory Part E			
Introduction,	Introduction to NDT Methods - (Overview	Introduction to NDT Methods - (Overview	Requirements	for	NDT	supervisory
Terminology,	only)	only)	personnel			
purpose & history of	Magnetic Particle	Magnetic Particle				
NDT	Penetrant Testing	Penetrant Testing				
	Radiography - Film, digital, Computed,	Radiography - Film, digital, Computed,				
	Real time, Small controlled area systems.	Real time, Small controlled area systems.				
	Ultrasonic testing - MUT, corrosion	Ultrasonic testing - MUT, corrosion				
	mapping, phased array, ToFD, long	mapping, phased array, ToFD, long				
	range	range				
	Eddy Current	Eddy Current				
	Tube testing - MFL, ET, IRIS	Tube testing - MFL, ET, IRIS				
	Hardness testing	Hardness testing				
	Leak testing	Leak testing				
	Thermography	Thermography				
	PEC - Incotest	PEC - Incotest				
	ACFM	ACFM				
	Intelligent pigs	Intelligent pigs				
	Holiday testing	Holiday testing				
	Pressure testing	Pressure testing				
	Mechanical testing	Mechanical testing				
	Why it is done	Why it is done				
	Tensile	Tensile				
	Bend	Bend				

Note "direct access to level 2 examination requires the total hours shown for level 1 and level 2".

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT. Reproduction and distribution of the document without the written permission of BINDT is strictly prohibited

	Charpy	Charpy	
	Hardness	Hardness	
	Macro	Macro	
2.0	Module 1	Module 1	Theory Part E
Physical principles of	Surface Coating	Surface Coating	Introduction to manufacturing technology.
the method and	Paints	Paints	Personnel.
associated	Thermal sprayed aluminium	Thermal sprayed aluminium	Nomenclature.
Knowledge	Galvanising	Galvanising	Materials.
ge	Ероху	Ероху	Processes.
	Wraps - GRP, cold tar, epoxy	Wraps - GRP, cold tar, epoxy	Economics.
		Module 2 Specific Theory	Order.
		Review of typical Oil & Gas systems and	
		components including Offshore	
		Installations & Mobile Offshore Drilling	
		Units (MODUs).	
		Relevant Standards – Pressure Systems	
		- PSSR, PUWER etc – Overview	
3.0	Module 1	Module 1	Theory Part E
Product knowledge	Product Technology	Product Technology	Properties of materials.
and capabilities of	Manufacturing methods, common use in	Manufacturing methods, common use in	Classes of properties and significance of
the method and its	industry, why they are used and some	industry, why they are used and some	properties on design.
derivate Techniques	advantages and disadvantages off each.	advantages and disadvantages off each.	Loading systems and available
			destructive tests and how to use the given
	Steel manufacture	Steel manufacture	data.
	Casting - (not just steel)	Casting - (not just steel)	Material properties and solid state
	Forging - (not just steel)	Forging - (not just steel)	changes.
	Aluminium	Aluminium	Energy effects on atoms.
	Corrosion resistant materials, Stainless, Inconel, monel, etc.	Corrosion resistant materials, Stainless, Inconel, monel, etc.	Metallic structure, solidification and grain size.
			3125.

The British Institute of Non-Destructive Testing is an accredited certification body offering personnel and quality management systems assessment and certification against criteria set out in international and European standards through the PCN Certification Scheme.

 $\ensuremath{\mathbb{C}}$ 2022 The British Institute of Non-Destructive Testing. All Rights Reserved.

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

Cladding, exp	losion bonded, welded.	Cladding, explosion bonded, welded.	Solid state changes in metals including
What is it why	r is it used	What is it why is it used	work hardening, plastic deformation and
CMV		CMV	cold working.
Cunifer		Cunifer	Recrystallization, recovery and grain
Composites		Composites	growth.
Plastics		Plastics	Age hardening.
Grain structur	e	Grain structure	Allotropic changes.
GRP		GRP	Heat treatment of steel, approximate
Grain structur	e	Grain structure	equilibrium Heat-treatment processes.
All: use, prob	able failure types and	All: use, probable failure types and	Austenitisation, annealing, normalising,
limitation for N	IDT testing for each	limitation for NDT testing for each	spheroidising, hardening, tempering.
material type	-	material type	Corrosion, direct chemical action,
Construction a	and fabrication	Construction and fabrication	electrolytic /electrochemical reaction, rate
Welding		Welding	of corrosion and associated factors, types
Mma		Mma	of corrosion and degradation, corrosion
Tig/Tag		Tig/Tag	protection.
Mig/Mag		Mig/Mag	Ferrous metals.
Sub arc		Sub arc	Choice of metal and alloys. Knowledge of
Others		Others	raw materials and steel making
A small bit o	on welding procedures and	A small bit on welding procedures and	processes.
welder qualific	cations	welder qualifications	Nonferrous metals including the alloys of
			aluminium, copper, brass, bronze, nickel
Heat Treatme	nt:	Heat Treatment:	magnesium, zinc and other specialised
Annealing		Annealing	alloys. Heat- and corrosion-resistant
Normalizing		Normalizing	alloys.
Stress relievin	ng	Stress relieving	Non-metallic including plastics, the
Tempering		Tempering	material types and characteristics.
Problems ass	ociated with incorrect HT	Problems associated with incorrect HT	
e.g. sigma pha	ase in stainless	e.g. sigma phase in stainless	coving the casting, forging and wrought
			processes. Associated defects and flaws.
		Module 2 Specific Theory	

The British Institute of Non-Destructive Testing is an accredited certification body offering personnel and quality management systems assessment and certification against criteria set out in international and European standards through the PCN Certification Scheme.

 $\ensuremath{\mathbb{C}}$ 2022 The British Institute of Non-Destructive Testing. All Rights Reserved.

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

Steel production methods,	Welding processes including welding
manufacturing processes relative to steel	metallurgy encompassing composition,
wrought products. Casting and forging of	grain size, structure effect of heat including stress and distortion.
steel components.	Weld design.
Impact of Corrosion, Why metals	Weld defects.
Corrode	Plastic flow including the effects of
Types of corrosion including,	deformation. Work hardening and
General/Uniform, Pitting and Microbial	recrystallization. Flow rate effects.
pitting, Erosion, Fatigue, Galvanic,	Influence of flow direction. Temperature and loading systems effects. Grain size.
Crevice, Inter-granular, Selective	Relative effects of hot and cold working
leaching, Environmentally assisted	relating to mechanical properties, finish,
cracking, Cavitation and Turbulence.	accuracy and process requirements.
	Forging operations including hot and cold
Corrosion mechanisms including:	working, tube and pipe making. Powder
CO ₂ (Sweet Corrosion), H ₂ S (Sour	metallurgy, pressing. Sintering and more common manufacturing processes.
Corrosion), Oxygen Corrosion,	Miscellaneous processes for plastic
Electrochemical Corrosion.	processing. Compression moulding,
Where Corrosion Occurs, Corrosion	closed die moulding, casting, extrusion,
Control System (Overview).	reinforced plastic moulding, post forming.
Material Selection; Metallic	Adhesive bonding of composites,
materials/Metallurgical principles	laminates.
	Metal removal processes, electrical discharge machining, electrochemical
Influence of Service Conditions on	machining and common processes.
Materials, Interaction of Operating	Surface finishing of steels including
Conditions; Stress and specific corrosion	carburising, flame hardening. Cleaning
environments, Combination of	processes wire brushing, blasting.
Temperature and Corrosion, (Common	

The British Institute of Non-Destructive Testing is an accredited certification body offering personnel and quality management systems assessment and certification against criteria set out in international and European standards through the PCN Certification Scheme. © 2022 The British Institute of Non-Destructive Testing. All Rights Reserved. This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

	Corrosion Mechanisms, include SCC, CUI etc.). Corrosion Resistant Alloys (CRA) – Overview	Coatings, types, preparation for coating, effect on subsequent NDT activities.
4.0 Equipment	Module 2 Specific TheorySafe Working Practices – Permit to Work– Assessing Risk etc.Module 4 Specific PracticalAppropriate instrument and sensitivitysettings.	Theory Part E Relevant equipment systems for the task.
5.0 Information prior to the Test	Module 2 Specific Theory Design Considerations Visual inspection and characterisation of c Drawing formats – P & IDs, Isometric drawings – Overview and working understanding. Common anomalies and defects Drawing formats – P & IDs, Isometric drawings – Overview and working understanding. Relevant Inspection/NDT Standards – Overview (API 570, 572, 574 etc.)Module 3 General Practical	
	Instrument settings: General initial settings. Differing methods including those for digital thickness instruments and A-scan instruments. Instrument checks for settings.	

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

	Factors influencing accuracy including: Operational conditions, surface conditions, surface temperature, metallic and non-metallic coatings, geometry. Equipment resolution and range Evaluation of accuracy: General and specific influencing factors. Method of calculation. Influence of materials: General factors, inhomogeneity, anisotropy, attenuation, surface conditions including contact and reflecting surfaces, corrosion and erosion.
6.0 Testing	Module 3 General Practical Parent material and weld heat affected zone examination: Information required prior to examination. Parent material examination, attenuation measurements, methods of flaw sizing 20dB, 6dB, DGS, maximum amplitude, use of flaw location slide, reporting methods. Brief knowledge of component surface finish and its measurement. Calibration of compression wave and 45 degree probes. Appropriate sensitivity settings. Surface conditions and surface preparation Practical techniques including:

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

		1	1
		General application, measurements	
		during manufacturing of product and in-	
		service measurement of residual wall	
		thickness.	
		Probe selection: Limiting parameters	
		Material differing from the reference	
		Specific measuring conditions including	
		measurements at elevated temperatures	
		and temperatures below 00C, hazardous	
		atmospheres.	
		Module 4 Specific Practical	
		Probe selection and limiting parameters	
7.0	Module 1	Module 1	
Evaluation and	Measurement and Drawings	Measurement and Drawings	
Reporting	Use of ruler, protractor, vernier calipers.	Use of ruler, protractor, vernier calipers.	
Reporting	Use of datum	Use of datum	
	Isometric drawing	Isometric drawing	
	Isometric line drawings (piping)	Isometric line drawings (piping)	
	Orthographic drawings	Orthographic drawings	
	Drawing symbols (basic)	Drawing symbols (basic)	
	CAD	CAD	
	Maths and calculations	Maths and calculations	
	Addition, subtraction multiplication,	Addition, subtraction multiplication,	
	division	division	
	Simple formula - selection of element	Simple formula - selection of element	
	required.	required.	
	Use of calculator	Use of calculator	
	Basic trigonometry (soc-cah-toa)	Basic trigonometry (soc-cah-toa)	
	Reporting requirement	Reporting requirement	
	Accurate and concise	Accurate and concise	

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

	Drawing Photography Recording and reporting Acceptance and rejection	Drawing Photography Recording and reporting Acceptance and rejection Module 2 Specific Theory Reporting formats including Material, Corrosion and Defect Registers. Reference data. Module 3 General Practical Test reports. General information and inspection data. Measurement of general corrosion,	
8.0 Assessment	Module 1Visual TestingOverviewPhysics of lightEnvironmental conditionsLight sourcesOptical aidsMeasuring equipmentSurface conditionStandardsSpecificationsStandardsProceduresInstructions	corrosion with pitting.Module 1Visual TestingOverviewPhysics of lightEnvironmental conditionsLight sourcesOptical aidsMeasuring equipmentSurface conditionStandardsSpecificationsStandardsProceduresInstructions	

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

9.0	Module 3 General Practical	
Quality aspects	Evaluation of accuracy:	
	General and specific influencing factors.	
	Method of calculation.	
10.0	Module 2 Specific Theory	
Development	NDT Corrosion Monitoring Methods	

Notes:

- (1) It is considered necessary to allocate a period of not less than 80 hours tuition for the above. All practical has to be conducted with both compression and 45 degree probe.
- (2) It is extremely unlikely that the level of practical described above will be conducted as part of a standard 3.1/3.2 weld inspection course.
- (3) It is therefore unlikely that a Technician holding a 3.1/3.2 will have the necessary skills required to conduct the corrosion monitoring techniques relative to Oil and Gas Industry.
- (4) Supplemental training and assessment will be necessary for holders of 3.1/3.2. This shall consist of the Industry Specific theory and the Practical Examination

The British Institute of Non-Destructive Testing is an accredited certification body offering personnel and quality management systems assessment and certification against criteria set out in international and European standards through the PCN Certification Scheme. © 2022 The British Institute of Non-Destructive Testing. All Rights Reserved.

This document is protected by UK and international copyright laws and remains the intellectual property of BINDT.

